"Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells" (2007), by Junying Yu et al
نویسندگان
چکیده
On 2 December 2007, Science published a report on creating human induced pluripotent stem (iPS) cells from human somatic cells: ?Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells.? This report came from a team of Madison, Wisconsin scientists: Junying Yu [5], Maxim A. Vodyanik, Kim Smuga-Otto, Jessica Antosiewicz-Bourget, Jennifer L. Frane, Shulan Tian, Jeff Nie, Gudrun A. Jonsdottir, Victor Ruotti, Ron Stewart, Igor I. Slukvin, and James A. Thomson [6]. Earlier that year Shinya Yamanaka [7] at Kyoto University [8], Japan published a similar paper, ?Generation of Germline-Competent Induced Pluripotent Stem Cells,? in Nature. Both papers independently identified four genes [9] used to reprogram human somatic cells to pluripotent stem cells [10], which are cells that have the ability to develop into any specialized cell type making up the body. The reprogrammed somatic cells were referred to as iPS cells and they exhibit fundamental qualities of human embryonic stem (ES) cells.
منابع مشابه
P-50: Elongating and Elongated Spermatids Manufactured In Vitro from Non-Human Primate Pluripotent Stem Cells
Background: We have recently shown that human embryonic (hESCs) and induced pluripotent stem cells (hiPSCs) can differentiate into advanced spermatogenic cells including round spermatids by in vitro culture (Easley et al., Direct differentiation of human pluripotent stem cells into haploid spermatogenic cells. Cell Reports 2, 440-446 2012) and also, in collaboration, that rhesus spermatogonial ...
متن کاملInduced pluripotent stem cell lines derived from human somatic cells.
Somatic cell nuclear transfer allows trans-acting factors present in the mammalian oocyte to reprogram somatic cell nuclei to an undifferentiated state. We show that four factors (OCT4, SOX2, NANOG, and LIN28) are sufficient to reprogram human somatic cells to pluripotent stem cells that exhibit the essential characteristics of embryonic stem (ES) cells. These induced pluripotent human stem cel...
متن کاملI-54: New Models for Human and Mouse Genetic
The possibility to reprogram somatic human cells will greatly and deeply change genetic approach and allow the development of new tools to study genetics diseases. Indeed, our ability to study human genetic diseases suffers from the lack of valid in vitro models. The latter should (i) be originating from human primary cells, (ii) be able to self-renew for a long time and (iii) be able to differ...
متن کاملO-9: Generation of Haploid Spermatids with Fertilization and Development Capacity from Human Spermatogonial Stem Cells of Cryptorchid Patients
Background Infertility affects around 15% of couples, and male factors account for 50%. Cryptorchidism is one of the most common causes for azoospermia. Generation of functional spermatids from azoospermia patients is of unusual significance for treating male infertility. It has been recently reported by peers and us that human spermatogonial stem cells (SSCs) can be clearly identified and cult...
متن کاملسلولهای بنیادی پرتوان القایی از تولید تا کاربرد: مقاله مروری
Embryonic stem cells are pluripotent stem cells which have the ability to indefinitely self-renew and differentiate into all differentiated cells of the body. Regarding their two main properties (unlimited self-renewal and multi-lineage differentiation), these cells have various biomedical applications in basic research and cell based therapy. Because the transplantation of differentiated cells...
متن کامل